Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
2.
J Immunol ; 208(3): 685-696, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-2257803

ABSTRACT

Immune response dysregulation plays a key role in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis. In this study, we evaluated immune and endothelial blood cell profiles of patients with coronavirus disease 2019 (COVID-19) to determine critical differences between those with mild, moderate, or severe COVID-19 using spectral flow cytometry. We examined a suite of immune phenotypes, including monocytes, T cells, NK cells, B cells, endothelial cells, and neutrophils, alongside surface and intracellular markers of activation. Our results showed progressive lymphopenia and depletion of T cell subsets (CD3+, CD4+, and CD8+) in patients with severe disease and a significant increase in the CD56+CD14+Ki67+IFN-γ+ monocyte population in patients with moderate and severe COVID-19 that has not been previously described. Enhanced circulating endothelial cells (CD45-CD31+CD34+CD146+), circulating endothelial progenitors (CD45-CD31+CD34+/-CD146-), and neutrophils (CD11b+CD66b+) were coevaluated for COVID-19 severity. Spearman correlation analysis demonstrated the synergism among age, obesity, and hypertension with upregulated CD56+ monocytes, endothelial cells, and decreased T cells that lead to severe outcomes of SARS-CoV-2 infection. Circulating monocytes and endothelial cells may represent important cellular markers for monitoring postacute sequelae and impacts of SARS-CoV-2 infection during convalescence and for their role in immune host defense in high-risk adults after vaccination.


Subject(s)
COVID-19/immunology , Endothelial Cells/immunology , Monocytes/immunology , SARS-CoV-2 , Adolescent , Adult , Age Factors , Aged , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , Biomarkers , CD56 Antigen/analysis , COVID-19/blood , COVID-19/epidemiology , Child , Comorbidity , Endothelial Cells/chemistry , Female , Flow Cytometry , Humans , Hypertension/epidemiology , Hypertension/immunology , Immunophenotyping , Lymphocyte Activation , Lymphocyte Subsets/immunology , Lymphopenia/etiology , Lymphopenia/immunology , Male , Middle Aged , Monocytes/chemistry , Neutrophils/immunology , Obesity/epidemiology , Obesity/immunology , Platelet Endothelial Cell Adhesion Molecule-1/analysis , SARS-CoV-2/immunology , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , Young Adult
3.
J Allergy Clin Immunol ; 147(1): 81-91, 2021 01.
Article in English | MEDLINE | ID: covidwho-2095538

ABSTRACT

BACKGROUND: Severe immunopathology may drive the deleterious manifestations that are observed in the advanced stages of coronavirus disease 2019 (COVID-19) but are poorly understood. OBJECTIVE: Our aim was to phenotype leukocyte subpopulations and the cytokine milieu in the lungs and blood of critically ill patients with COVID-19 acute respiratory distress syndrome (ARDS). METHODS: We consecutively included patients less than 72 hours after intubation following informed consent from their next of kin. Bronchoalveolar lavage fluid was evaluated by microscopy; bronchoalveolar lavage fluid and blood were assessed by 10-color flow cytometry and a multiplex cytokine panel. RESULTS: Four mechanically ventilated patients (aged 40-75 years) with moderate-to-severe COVID-19 ARDS were included. Immature neutrophils dominated in both blood and lungs, whereas CD4 and CD8 T-cell lymphopenia was observed in the 2 compartments. However, regulatory T cells and TH17 cells were found in higher fractions in the lung. Lung CD4 and CD8 T cells and macrophages expressed an even higher upregulation of activation markers than in blood. A wide range of cytokines were expressed at high levels both in the blood and in the lungs, most notably, IL-1RA, IL-6, IL-8, IP-10, and monocyte chemoattactant protein-1, consistent with hyperinflammation. CONCLUSION: COVID-19 ARDS exhibits a distinct immunologic profile in the lungs, with a depleted and exhausted CD4 and CD8 T-cell population that resides within a heavily hyperinflammatory milieu.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Lung/immunology , Lymphopenia/immunology , Respiratory Distress Syndrome/immunology , SARS-CoV-2/immunology , Th17 Cells/immunology , Adult , Aged , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , Cross-Sectional Studies , Cytokines/immunology , Female , Humans , Immunophenotyping , Lung/pathology , Lymphopenia/pathology , Male , Middle Aged , Respiratory Distress Syndrome/pathology , Th17 Cells/pathology
4.
Signal Transduct Target Ther ; 7(1): 57, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1702971

ABSTRACT

The coronavirus disease 2019 (COVID-19) is a highly transmissible disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that poses a major threat to global public health. Although COVID-19 primarily affects the respiratory system, causing severe pneumonia and acute respiratory distress syndrome in severe cases, it can also result in multiple extrapulmonary complications. The pathogenesis of extrapulmonary damage in patients with COVID-19 is probably multifactorial, involving both the direct effects of SARS-CoV-2 and the indirect mechanisms associated with the host inflammatory response. Recognition of features and pathogenesis of extrapulmonary complications has clinical implications for identifying disease progression and designing therapeutic strategies. This review provides an overview of the extrapulmonary complications of COVID-19 from immunological and pathophysiologic perspectives and focuses on the pathogenesis and potential therapeutic targets for the management of COVID-19.


Subject(s)
Acute Kidney Injury/complications , COVID-19/complications , Cytokine Release Syndrome/complications , Disseminated Intravascular Coagulation/complications , Lymphopenia/complications , Myocarditis/complications , Pulmonary Embolism/complications , Acute Kidney Injury/drug therapy , Acute Kidney Injury/immunology , Acute Kidney Injury/virology , Anticoagulants/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/immunology , COVID-19/virology , Clinical Trials as Topic , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/virology , Disseminated Intravascular Coagulation/drug therapy , Disseminated Intravascular Coagulation/immunology , Disseminated Intravascular Coagulation/virology , Endothelial Cells/drug effects , Endothelial Cells/immunology , Endothelial Cells/virology , Humans , Immunity, Innate/drug effects , Immunologic Factors/therapeutic use , Lymphopenia/drug therapy , Lymphopenia/immunology , Lymphopenia/virology , Myocarditis/drug therapy , Myocarditis/immunology , Myocarditis/virology , Pulmonary Embolism/drug therapy , Pulmonary Embolism/immunology , Pulmonary Embolism/virology , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , COVID-19 Drug Treatment
5.
Front Immunol ; 12: 799896, 2021.
Article in English | MEDLINE | ID: covidwho-1662583

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in rapid T lymphocytopenia and functional impairment of T cells. The underlying mechanism, however, remains incompletely understood. In this study, we focused on characterizing the phenotype and kinetics of T-cell subsets with mitochondrial dysfunction (MD) by multicolor flow cytometry and investigating the association between MD and T-cell functionality. While 73.9% of study subjects displayed clinical lymphocytopenia upon hospital admission, a significant reduction of CD4 or CD8 T-cell frequency was found in all asymptomatic, symptomatic, and convalescent cases. CD4 and CD8 T cells with increased MD were found in both asymptomatic and symptomatic patients within the first week of symptom onset. Lower proportion of memory CD8 T cell with MD was found in severe patients than in mild ones at the stage of disease progression. Critically, the frequency of T cells with MD in symptomatic patients was preferentially associated with CD4 T-cell loss and CD8 T-cell hyperactivation, respectively. Patients bearing effector memory CD4 and CD8 T cells with the phenotype of high MD exhibited poorer T-cell responses upon either phorbol 12-myristate-13-acetate (PMA)/ionomycin or SARS-CoV-2 peptide stimulation than those with low MD. Our findings demonstrated an MD-associated mechanism underlying SARS-CoV-2-induced T lymphocytopenia and functional impairment during the acute phase of infection.


Subject(s)
COVID-19/complications , Lymphopenia/complications , Lymphopenia/etiology , Mitochondrial Diseases/etiology , Adult , Aged , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Female , Humans , Immunologic Memory/immunology , Ionomycin/therapeutic use , Lymphopenia/immunology , Male , Middle Aged , Mitochondria/immunology , Mitochondrial Diseases/immunology , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/therapeutic use , Polymethacrylic Acids/therapeutic use , COVID-19 Drug Treatment
6.
Front Endocrinol (Lausanne) ; 12: 774346, 2021.
Article in English | MEDLINE | ID: covidwho-1662575

ABSTRACT

Background: Both lymphopenia and thyroid dysfunction are commonly observed among COVID-19 patients. Whether thyroid function independently correlates with lymphocyte counts (LYM) remains to be elucidated. Methods: We included consecutive adults without known thyroid disorder admitted to Queen Mary Hospital for COVID-19 from July 2020 to April 2021 who had thyroid-stimulating hormone (TSH), free thyroxine (fT4), free triiodothyronine (fT3) and LYM measured on admission. Results: A total of 541 patients were included. Median LYM was 1.22 x 109/L, with 36.0% of the cohort lymphopenic. 83 patients (15.4%) had abnormal thyroid function tests (TFTs), mostly non-thyroidal illness syndrome (NTIS). Patients with lymphopenia had lower TSH, fT4 and fT3 levels than those without. Multivariable stepwise linear regression analysis revealed that both TSH (standardized beta 0.160, p<0.001) and fT3 (standardized beta 0.094, p=0.023), but not fT4, remained independently correlated with LYM, in addition to age, SARS-CoV-2 viral load, C-reactive protein levels, coagulation profile, sodium levels and more severe clinical presentations. Among the 40 patients who had reassessment of TFTs and LYM after discharge, at a median of 9 days from admission, there were significant increases in TSH (p=0.031), fT3 (p<0.001) and LYM (p<0.001). Furthermore, patients who had both lymphopenia and NTIS were more likely to deteriorate compared to those who only had either one alone, and those without lymphopenia or NTIS (p for trend <0.001). Conclusion: TSH and fT3 levels showed independent positive correlations with LYM among COVID-19 patients, supporting the interaction between the hypothalamic-pituitary-thyroid axis and immune system in COVID-19.


Subject(s)
COVID-19/complications , Lymphocytes/pathology , Lymphopenia/epidemiology , SARS-CoV-2/isolation & purification , Thyroid Diseases/epidemiology , Thyrotropin/blood , Triiodothyronine/blood , Adult , Aged , COVID-19/virology , China/epidemiology , Female , Hospitalization , Humans , Lymphocyte Count , Lymphopenia/blood , Lymphopenia/immunology , Lymphopenia/virology , Male , Middle Aged , Thyroid Diseases/blood , Thyroid Diseases/immunology , Thyroid Diseases/virology , Thyroid Function Tests , Thyroid Hormones/blood
7.
Signal Transduct Target Ther ; 6(1): 418, 2021 12 10.
Article in English | MEDLINE | ID: covidwho-1565706

ABSTRACT

The systemic processes involved in the manifestation of life-threatening COVID-19 and in disease recovery are still incompletely understood, despite investigations focusing on the dysregulation of immune responses after SARS-CoV-2 infection. To define hallmarks of severe COVID-19 in acute disease (n = 58) and in disease recovery in convalescent patients (n = 28) from Hannover Medical School, we used flow cytometry and proteomics data with unsupervised clustering analyses. In our observational study, we combined analyses of immune cells and cytokine/chemokine networks with endothelial activation and injury. ICU patients displayed an altered immune signature with prolonged lymphopenia but the expansion of granulocytes and plasmablasts along with activated and terminally differentiated T and NK cells and high levels of SARS-CoV-2-specific antibodies. The core signature of seven plasma proteins revealed a highly inflammatory microenvironment in addition to endothelial injury in severe COVID-19. Changes within this signature were associated with either disease progression or recovery. In summary, our data suggest that besides a strong inflammatory response, severe COVID-19 is driven by endothelial activation and barrier disruption, whereby recovery depends on the regeneration of the endothelial integrity.


Subject(s)
Antibodies, Viral/blood , Blood Proteins/metabolism , COVID-19/diagnosis , Cytokine Release Syndrome/diagnosis , Endothelium, Vascular/virology , Lymphopenia/diagnosis , SARS-CoV-2/pathogenicity , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , Chemokine CXCL10/blood , Chemokine CXCL9/blood , Cluster Analysis , Convalescence , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/mortality , Cytokine Release Syndrome/virology , Disease Progression , Endothelium, Vascular/immunology , Granulocytes/immunology , Granulocytes/virology , Hematopoietic Cell Growth Factors/blood , Hepatocyte Growth Factor/blood , Humans , Intensive Care Units , Interleukin-12 Subunit p40/blood , Interleukin-6/blood , Interleukin-8/blood , Killer Cells, Natural/immunology , Killer Cells, Natural/virology , Lectins, C-Type/blood , Lymphopenia/immunology , Lymphopenia/mortality , Lymphopenia/virology , Plasma Cells/immunology , Plasma Cells/virology , Survival Analysis , T-Lymphocytes/immunology , T-Lymphocytes/virology
8.
J Infect Dis ; 224(8): 1333-1344, 2021 10 28.
Article in English | MEDLINE | ID: covidwho-1493827

ABSTRACT

BACKGROUND: Lymphopenia is a key feature for adult patients with coronavirus disease 2019 (COVID-19), although it is rarely observed in children. The underlying mechanism remains unclear. METHODS: Immunohistochemical and flow cytometric analyses were used to compare the apoptotic rate of T cells from COVID-19 adults and children and apoptotic responses of adult and child T cells to COVID-19 pooled plasma. Biological properties of caspases and reactive oxygen species were assessed in T cells treated by COVID-19 pooled plasma. RESULTS: Mitochondria apoptosis of peripheral T cells were identified in COVID-19 adult patient samples but not in the children. Furthermore, increased tumor necrosis factor-α and interleukin-6 in COVID-19 plasma induced mitochondria apoptosis and caused deoxyribonucleic acid damage by elevating reactive oxygen species levels of the adult T cells. However, the child T cells showed tolerance to mitochondrial apoptosis due to mitochondria autophagy. Activation of autophagy could decrease apoptotic sensitivity of the adult T cells to plasma from COVID-19 patients. CONCLUSIONS: Our results indicated that the mitochondrial apoptosis pathway was activated in T cells of COVID-19 adult patients specifically, which may shed light on the pathophysiological difference between adults and children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 ).


Subject(s)
COVID-19/complications , Lymphopenia/blood , SARS-CoV-2/immunology , T-Lymphocytes/pathology , Adolescent , Adult , Age Factors , Aged , Apoptosis/immunology , Autophagy , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Child , Child, Preschool , Humans , Infant , Lymphopenia/immunology , Lymphopenia/pathology , Lymphopenia/virology , Male , Middle Aged , Mitochondria/immunology , Mitochondria/pathology , Reactive Oxygen Species/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology
9.
Front Immunol ; 12: 715023, 2021.
Article in English | MEDLINE | ID: covidwho-1477819

ABSTRACT

Emerging evidence has unveiled the secondary infection as one of the mortal causes of post-SARS-CoV-2 infection, but the factors related to secondary bacterial or fungi infection remains largely unexplored. We here systematically investigated the factors that might contribute to secondary infection. By clinical examination index analysis of patients, combined with the integrative analysis with RNA-seq analysis in the peripheral blood mononuclear cell isolated shortly from initial infection, this study showed that the antibiotic catabolic process and myeloid cell homeostasis were activated while the T-cell response were relatively repressed in those with the risk of secondary infection. Further monitoring analysis of immune cell and liver injury analysis showed that the risk of secondary infection was accompanied by severe lymphocytopenia at the intermediate and late stages and liver injury at the early stages of SARS-CoV-2. Moreover, the metagenomics analysis of bronchoalveolar lavage fluid and the microbial culture analysis, to some extent, showed that the severe pneumonia-related bacteria have already existed in the initial infection.


Subject(s)
Bacterial Infections/epidemiology , COVID-19/pathology , Coinfection/epidemiology , Coinfection/mortality , Mycoses/epidemiology , Adult , Aged , Aged, 80 and over , Bacterial Infections/mortality , Bronchoalveolar Lavage Fluid/microbiology , CD4 Lymphocyte Count , Female , Humans , Leukocytes, Mononuclear/immunology , Liver/injuries , Liver/virology , Lymphopenia/immunology , Male , Middle Aged , Mycoses/mortality , Retrospective Studies , Risk Factors , SARS-CoV-2/immunology , T-Lymphocytes/immunology
10.
J Immunol Res ; 2021: 9822706, 2021.
Article in English | MEDLINE | ID: covidwho-1476890

ABSTRACT

BACKGROUND: Neutralizing antibody (nAb) response is generated following infection or immunization and plays an important role in the protection against a broad of viral infections. The role of nAb during clinical progression of coronavirus disease 2019 (COVID-19) remains little known. METHODS: 123 COVID-19 patients during hospitalization in Tongji Hospital were involved in this retrospective study. The patients were grouped based on the severity and outcome. The nAb responses of 194 serum samples were collected from these patients within an investigation period of 60 days after the onset of symptoms and detected by a pseudotyped virus neutralization assay. The detail data about onset time, disease severity and laboratory biomarkers, treatment, and clinical outcome of these participants were obtained from electronic medical records. The relationship of longitudinal nAb changes with each clinical data was further assessed. RESULTS: The nAb response in COVID-19 patients evidently experienced three consecutive stages, namely, rising, stationary, and declining periods. Patients with different severity and outcome showed differential dynamics of the nAb response over the course of disease. During the stationary phase (from 20 to 40 days after symptoms onset), all patients evolved nAb responses. In particular, high levels of nAb were elicited in severe and critical patients and older patients (≥60 years old). More importantly, critical but deceased COVID-19 patients showed high levels of several proinflammation cytokines, such as IL-2R, IL-8, and IL-6, and anti-inflammatory cytokine IL-10 in vivo, which resulted in lymphopenia, multiple organ failure, and the rapidly decreased nAb response. CONCLUSION: Our results indicate that nAb plays a crucial role in preventing the progression and deterioration of COVID-19, which has important implications for improving clinical management and developing effective interventions.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Biomarkers/blood , COVID-19/pathology , Cytokines/blood , Female , Humans , Lymphopenia/blood , Lymphopenia/immunology , Male , Middle Aged , Neutralization Tests , Retrospective Studies , Severity of Illness Index
11.
PLoS Pathog ; 17(9): e1009850, 2021 09.
Article in English | MEDLINE | ID: covidwho-1394562

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) is caused by the betacoronavirus Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus that can mediate asymptomatic or fatal infections characterized by pneumonia, acute respiratory distress syndrome (ARDS), and multi-organ failure. Several studies have highlighted the importance of B and T lymphocytes, given that neutralizing antibodies and T cell responses are required for an effective immunity. In addition, other reports have described myeloid cells such as macrophages and monocytes play a major role in the immunity against SARS-CoV-2 as well as dysregulated pro-inflammatory signature that characterizes severe COVID-19. During COVID-19, neutrophils have been defined as a heterogeneous group of cells, functionally linked to severe inflammation and thrombosis triggered by degranulation and NETosis, but also to suppressive phenotypes. The physiological role of suppressive neutrophils during COVID-19 and their implications in severe disease have been poorly studied and is not well understood. Here, we discuss the current evidence regarding the role of neutrophils with suppressive properties such as granulocytic myeloid-derived suppressor cells (G-MDSCs) and their possible role in suppressing CD4+ and CD8+ T lymphocytes expansion and giving rise to lymphopenia in severe COVID-19 infection.


Subject(s)
COVID-19/immunology , Lymphopenia/complications , Neutrophils/immunology , SARS-CoV-2/physiology , Animals , COVID-19/blood , COVID-19/complications , Humans , Lymphopenia/blood , Lymphopenia/immunology , Neutrophils/virology , SARS-CoV-2/immunology , Severity of Illness Index
12.
Mol Immunol ; 138: 121-127, 2021 10.
Article in English | MEDLINE | ID: covidwho-1347762

ABSTRACT

AIMS: Coronavirus disease 2019 (COVID-19) is a novel viral infection threatening worldwide health as currently there exists no effective treatment strategy and vaccination programs are not publicly available yet. T lymphocytes play an important role in antiviral defenses. However, T cell frequency and functionality may be affected during the disease. MATERIAL AND METHODS: Total blood samples were collected from patients with mild and severe COVID-19, and the total lymphocyte number, as well as CD4+ and CD8 + T cells were assessed using flowcytometry. Besides, the expression of exhausted T cell markers was evaluated. The levels of proinflammatory cytokines were also investigated in the serum of all patients using enzyme-linked immunesorbent assay (ELISA). Finally, the obtained results were analyzed along with laboratory serological reports. RESULTS: COVID-19 patients showed lymphopenia and reduced CD4+ and CD8 + T cells, as well as high percentage of PD-1 expression by T cells, especially in severe cases. Serum secretion of TNF-α, IL-1ß, and IL-2 receptor (IL-2R) were remarkably increased in patients with severe symptoms, as compared with healthy controls. Moreover, high levels of triglyceride (TG) and low density lipoprotein cholesterol (LDL-C), were correlated with the severity of the disease. CONCLUSION: Reduced number and function of T cells were observed in COVID-19 patients, especially in severe patients. Meanwhile, the secretion of proinflammatory cytokines was increased as the disease developed. High level of serum IL-2R was also considered as a sign of lymphopenia. Additionally, hypercholesterolemia and hyperlipidemia could be important prognostic factors in determining the severity of the infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Lymphopenia/immunology , SARS-CoV-2/immunology , Adult , Aged , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , COVID-19/metabolism , COVID-19/virology , Cholesterol, LDL/blood , Cytokines/blood , Cytokines/immunology , Cytokines/metabolism , Disease Progression , Female , Humans , Lymphocyte Count , Lymphopenia/blood , Lymphopenia/virology , Male , Middle Aged , Prognosis , SARS-CoV-2/physiology , Severity of Illness Index , Triglycerides/blood
13.
mBio ; 12(4): e0150321, 2021 08 31.
Article in English | MEDLINE | ID: covidwho-1327616

ABSTRACT

Severe coronavirus disease 2019 (COVID-19) has been associated with T cell lymphopenia, but no causal effect of T cell deficiency on disease severity has been established. To investigate the specific role of T cells in recovery from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, we studied rhesus macaques that were depleted of either CD4+, CD8+, or both T cell subsets prior to infection. Peak virus loads were similar in all groups, but the resolution of virus in the T cell-depleted animals was slightly delayed compared to that in controls. The T cell-depleted groups developed virus-neutralizing antibody responses and class switched to IgG. When reinfected 6 weeks later, the T cell-depleted animals showed anamnestic immune responses characterized by rapid induction of high-titer virus-neutralizing antibodies, faster control of virus loads, and reduced clinical signs. These results indicate that while T cells play a role in the recovery of rhesus macaques from acute SARS-CoV-2 infections, their depletion does not induce severe disease, and T cells do not account for the natural resistance of rhesus macaques to severe COVID-19. Neither primed CD4+ nor CD8+ T cells appeared critical for immunoglobulin class switching, the development of immunological memory, or protection from a second infection. IMPORTANCE Patients with severe COVID-19 often have decreased numbers of T cells, a cell type important in fighting most viral infections. However, it is not known whether the loss of T cells contributes to severe COVID-19 or is a consequence of it. We studied rhesus macaques, which develop only mild COVID-19, similar to most humans. Experimental depletion of T cells slightly prolonged their clearance of virus, but there was no increase in disease severity. Furthermore, they were able to develop protection from a second infection and produced antibodies capable of neutralizing the virus. They also developed immunological memory, which allows a much stronger and more rapid response upon a second infection. These results suggest that T cells are not critical for recovery from acute SARS-CoV-2 infections in this model and point toward B cell responses and antibodies as the essential mediators of protection from re-exposure.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/pathology , Immunologic Memory/immunology , Lymphopenia/immunology , SARS-CoV-2/immunology , Animals , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Female , Lymphocyte Depletion/methods , Macaca mulatta/immunology , Male
14.
Viruses ; 13(7)2021 07 20.
Article in English | MEDLINE | ID: covidwho-1325785

ABSTRACT

Lymphopenia is a frequent hematological manifestation, associated with a severe course of COVID-19, with an insufficiently understood pathogenesis. We present molecular genetic immunohistochemical, and electron microscopic data on SARS-CoV-2 dissemination and viral load (VL) in lungs, mediastinum lymph nodes, and the spleen of 36 patients who died from COVID-19. Lymphopenia <1 × 109/L was observed in 23 of 36 (63.8%) patients. In 12 of 36 cases (33%) SARS-CoV-2 was found in lung tissues only with a median VL of 239 copies (range 18-1952) SARS-CoV-2 cDNA per 100 copies of ABL1. Histomorphological changes corresponding to bronchopneumonia and the proliferative phase of DAD were observed in these cases. SARS-CoV-2 dissemination into the lungs, lymph nodes, and spleen was detected in 23 of 36 patients (58.4%) and was associated with the exudative phase of DAD in most of these cases. The median VL in the lungs was 12,116 copies (range 810-250281), lymph nodes-832 copies (range 96-11586), and spleen-71.5 copies (range 0-2899). SARS-CoV-2 in all cases belonged to the 19A strain. A immunohistochemical study revealed SARS-CoV-2 proteins in pneumocytes, alveolar macrophages, and bronchiolar epithelial cells in lung tissue, sinus histiocytes of lymph nodes, as well as cells of the Billroth pulp cords and spleen capsule. SARS-CoV-2 particles were detected by transmission electron microscopy in the cytoplasm of the endothelial cell, macrophages, and lymphocytes. The infection of lymphocytes with SARS-CoV-2 that we discovered for the first time may indicate a possible link between lymphopenia and SARS-CoV-2-mediated cytotoxic effect.


Subject(s)
COVID-19/virology , Lung/virology , Lymph Nodes/virology , Lymphopenia/virology , Mediastinum/virology , SARS-CoV-2/isolation & purification , Spleen/virology , Aged , Aged, 80 and over , COVID-19 Testing , Female , Humans , Immunohistochemistry , Lung/pathology , Lymphopenia/immunology , Male , Middle Aged , Multiplex Polymerase Chain Reaction , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Load
15.
Virulence ; 12(1): 1771-1794, 2021 12.
Article in English | MEDLINE | ID: covidwho-1305404

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a highly infectious viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Laboratory findings from a significant number of patients with COVID-19 indicate the occurrence of leukocytopenia, specifically lymphocytopenia. Moreover, infected patients can experience contrasting outcomes depending on lymphocytopenia status. Patients with resolved lymphocytopenia are more likely to recover, whereas critically ill patients with signs of unresolved lymphocytopenia develop severe complications, sometimes culminating in death. Why immunodepression manifests in patients with COVID-19 remains unclear. Therefore, the evaluation of clinical symptoms and laboratory findings from infected patients is critical for understanding the disease course and its consequences. In this review, we take a logical approach to unravel the reasons for immunodepression in patients with COVID-19. Following the footprints of the virus within host tissues, from entry to exit, we extrapolate the mechanisms underlying the phenomenon of immunodepression.


Subject(s)
COVID-19/immunology , Immune Tolerance , SARS-CoV-2/pathogenicity , COVID-19/pathology , Cell Death , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Cytokines/metabolism , Humans , Immunity , Lymphopenia/immunology , Lymphopenia/pathology , SARS-CoV-2/physiology , Virus Replication
16.
Pharmacol Res ; 159: 104946, 2020 09.
Article in English | MEDLINE | ID: covidwho-1279674

ABSTRACT

Coronavirus Disease 2019 (COVID-19) has sparked a global pandemic, affecting more than 4 million people worldwide. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause acute lung injury (ALI) and even acute respiratory distress syndrome (ARDS); with a fatality of 7.0 %. Accumulating evidence suggested that the progression of COVID-19 is associated with lymphopenia and excessive inflammation, and a subset of severe cases might exhibit cytokine storm triggered by secondary hemophagocytic lymphohistiocytosis (sHLH). Furthermore, secondary bacterial infection may contribute to the exacerbation of COVID-19. We recommend using both IL-10 and IL-6 as the indicators of cytokine storm, and monitoring the elevation of procalcitonin (PCT) as an alert for initiating antibacterial agents. Understanding the dynamic progression of SARS-CoV-2 infection is crucial to determine an effective treatment strategy to reduce the rising mortality of this global pandemic.


Subject(s)
Betacoronavirus , Coronavirus Infections/blood , Pandemics , Pneumonia, Viral/blood , Biomarkers/blood , COVID-19 , Coronavirus Infections/etiology , Coronavirus Infections/immunology , Cytokines/blood , Disease Progression , Humans , Interleukin-10/blood , Interleukin-6/blood , Lymphopenia/etiology , Lymphopenia/immunology , Pneumonia, Viral/etiology , Pneumonia, Viral/immunology , Procalcitonin/blood , SARS-CoV-2
17.
J Microbiol Immunol Infect ; 54(1): 105-108, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1272568

ABSTRACT

Cases of co-infection and secondary infection emerging during the current Coronavirus Disease-19 (COVID-19) pandemic are a major public health concern. Such cases may result from immunodysregulation induced by the SARS-CoV-2 virus. Pandemic preparedness must include identification of disease natural history and common secondary infections to implement clinical solutions.


Subject(s)
COVID-19/immunology , COVID-19/microbiology , Coinfection/immunology , Coinfection/virology , SARS-CoV-2/immunology , COVID-19/epidemiology , COVID-19/virology , Coinfection/epidemiology , Humans , Immunosuppression Therapy , Lymphopenia/immunology , Lymphopenia/microbiology , Lymphopenia/virology , Pandemics , Prevalence , Public Health , Superinfection/immunology , Superinfection/microbiology , Superinfection/virology
18.
Front Immunol ; 12: 659018, 2021.
Article in English | MEDLINE | ID: covidwho-1236672

ABSTRACT

Information on the immunopathobiology of coronavirus disease 2019 (COVID-19) is rapidly increasing; however, there remains a need to identify immune features predictive of fatal outcome. This large-scale study characterized immune responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection using multidimensional flow cytometry, with the aim of identifying high-risk immune biomarkers. Holistic and unbiased analyses of 17 immune cell-types were conducted on 1,075 peripheral blood samples obtained from 868 COVID-19 patients and on samples from 24 patients presenting with non-SARS-CoV-2 infections and 36 healthy donors. Immune profiles of COVID-19 patients were significantly different from those of age-matched healthy donors but generally similar to those of patients with non-SARS-CoV-2 infections. Unsupervised clustering analysis revealed three immunotypes during SARS-CoV-2 infection; immunotype 1 (14% of patients) was characterized by significantly lower percentages of all immune cell-types except neutrophils and circulating plasma cells, and was significantly associated with severe disease. Reduced B-cell percentage was most strongly associated with risk of death. On multivariate analysis incorporating age and comorbidities, B-cell and non-classical monocyte percentages were independent prognostic factors for survival in training (n=513) and validation (n=355) cohorts. Therefore, reduced percentages of B-cells and non-classical monocytes are high-risk immune biomarkers for risk-stratification of COVID-19 patients.


Subject(s)
COVID-19/immunology , COVID-19/mortality , Adaptive Immunity , Adult , Aged , Aged, 80 and over , B-Lymphocytes/immunology , Biomarkers , COVID-19/pathology , Female , Humans , Immunity, Innate , Lymphopenia/immunology , Lymphopenia/mortality , Lymphopenia/pathology , Male , Middle Aged , Monocytes/immunology , Prognosis , SARS-CoV-2 , Survival Analysis , Young Adult
19.
Front Immunol ; 12: 661052, 2021.
Article in English | MEDLINE | ID: covidwho-1229177

ABSTRACT

While lymphocytopenia is a common characteristic of coronavirus disease 2019 (COVID-19), the mechanisms responsible for this lymphocyte depletion are unclear. Here, we retrospectively reviewed the clinical and immunological data from 18 fatal COVID-19 cases, results showed that these patients had severe lymphocytopenia, together with high serum levels of inflammatory cytokines (IL-6, IL-8 and IL-10), and elevation of many other mediators in routine laboratory tests, including C-reactive protein, lactate dehydrogenase, α-hydroxybutyrate dehydrogenase and natriuretic peptide type B. The spleens and hilar lymph nodes (LNs) from six additional COVID-19 patients with post-mortem examinations were also collected, histopathologic detection showed that both organs manifested severe tissue damage and lymphocyte apoptosis in these six cases. In situ hybridization assays illustrated that SARS-CoV-2 viral RNA accumulates in these tissues, and transmission electronic microscopy confirmed that coronavirus-like particles were visible in the LNs. SARS-CoV-2 Spike and Nucleocapsid protein (NP) accumulated in the spleens and LNs, and the NP antigen restricted in angiotensin-converting enzyme 2 (ACE2) positive macrophages and dendritic cells (DCs). Furthermore, SARS-CoV-2 triggered the transcription of Il6, Il8 and Il1b genes in infected primary macrophages and DCs in vitro, and SARS-CoV-2-NP+ macrophages and DCs also manifested high levels of IL-6 and IL-1ß, which might directly decimate human spleens and LNs and subsequently lead to lymphocytopenia in vivo. Collectively, these results demonstrated that SARS-CoV-2 induced lymphocytopenia by promoting systemic inflammation and direct neutralization in human spleen and LNs.


Subject(s)
COVID-19/immunology , Lymph Nodes/immunology , Lymphopenia/immunology , SARS-CoV-2/immunology , Spleen/immunology , Angiotensin-Converting Enzyme 2/immunology , COVID-19/complications , COVID-19/pathology , Coronavirus Nucleocapsid Proteins/immunology , Cytokines/immunology , Female , Humans , Inflammation/immunology , Inflammation/pathology , Lymph Nodes/ultrastructure , Lymphopenia/etiology , Lymphopenia/pathology , Middle Aged , Phosphoproteins/immunology , RNA, Messenger/immunology , Retrospective Studies , SARS-CoV-2/pathogenicity , SARS-CoV-2/ultrastructure , Spleen/ultrastructure
20.
J Med Virol ; 93(9): 5474-5480, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1219314

ABSTRACT

In this study, laboratorial parameters of hospitalized novel coronavirus (COVID-19) patients, who were complicated with severe pneumonia, were compared with the findings of cytokine storm developing in macrophage activation syndrome (MAS)/secondary hemophagocytic lymphohistiocytosis (sHLH). Severe pneumonia occurred as a result of cytokine storm in some patients who needed intensive care unit (ICU), and it is aimed to determine the precursive parameters in this situation. Also in this study, the aim is to identify laboratory criteria that predict worsening disease and ICU intensification, as well as the development of cytokine storm. This article comprises a retrospective cohort study of patients admitted to a single institution with COVID-19 pneumonia. This study includes 150 confirmed COVID-19 patients with severe pneumonia. When they were considered as severe pneumonia patients, the clinic and laboratory parameters of this group are compared with H-score criteria. Patients are divided into two subgroups; patients with worsened symptoms who were transferred into tertiary ICU, and patients with stable symptoms followed in the clinic. For the patients with confirmed COVID-19 infection, after they become complicated with severe pneumonia, lymphocytopenia (55.3%), anemia (12.0%), thrombocytopenia (19.3%), hyperferritinemia (72.5%), hyperfibrinogenemia (63.7%) and elevated lactate dehydrogenase (LDH) (90.8%), aspartate aminotransaminase (AST) (31.3%), alanine aminotransaminase (ALT) (20.7%) are detected. There were no significant changes in other parameters. Blood parameters between the pre-ICU period and the ICU period (in which their situation had been worsened and acute respiratory distress syndrome [ARDS] was developed) were also compared. In the latter group lymphocyte levels were found significantly reduced (p = 0.01), and LDH, highly sensitive troponin (hs-troponin), procalcitonin, and triglyceride levels were significantly increased (p < 0.05). In addition, there was no change in hemoglobin, leukocyte, platelet, ferritin, and liver function test levels, including patients who developed ARDS, similar to the cytokine storm developed in MAS/sHLH. COVID-19 pneumonia has similar findings as hyperinflammatory syndromes but does not seem to have typical features as in cytokine storm developed in MAS/sHLH. In the severe patient group who has started to develop ARDS signs, a decrease in lymphocyte level in addition to the elevated LDH, hs-troponin, procalcitonin, and triglyceride levels can be a predictor in progression to ICU admission and could help in the planning of anti-cytokine therapy.


Subject(s)
COVID-19/pathology , Cytokine Release Syndrome/pathology , Lymphohistiocytosis, Hemophagocytic/pathology , Macrophage Activation Syndrome/pathology , SARS-CoV-2/pathogenicity , Aged , Alanine Transaminase/blood , Anemia/blood , Anemia/diagnosis , Anemia/immunology , Anemia/pathology , Aspartate Aminotransferases/blood , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , COVID-19/immunology , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/immunology , Diagnosis, Differential , Disease Progression , Female , Fibrinogen/metabolism , Humans , Hyperferritinemia/blood , Hyperferritinemia/diagnosis , Hyperferritinemia/immunology , Hyperferritinemia/pathology , Intensive Care Units , L-Lactate Dehydrogenase/blood , Lymphohistiocytosis, Hemophagocytic/blood , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphopenia/blood , Lymphopenia/diagnosis , Lymphopenia/immunology , Lymphopenia/pathology , Macrophage Activation Syndrome/blood , Macrophage Activation Syndrome/diagnosis , Macrophage Activation Syndrome/immunology , Male , Middle Aged , Procalcitonin/blood , Retrospective Studies , Thrombocytopenia/blood , Thrombocytopenia/diagnosis , Thrombocytopenia/immunology , Thrombocytopenia/pathology , Triglycerides/blood , Troponin/blood
SELECTION OF CITATIONS
SEARCH DETAIL